
Boundary Conditions for Displacement Experiments through Short Laboratory Soil
Columns1

M. TH. VAN GENUCHTEN AND J. C. PARKER2

ABSTRACT
This paper presents a discussion of the physical and mathematical

significance of various boundary conditions applicable to one-
dimensional solute transport through relatively short laboratory soil
columns. Based on mass balance considerations, it is shown that a
first-type or concentration-type condition at the inlet boundary in-
correctly predicts the volume-averaged or resident concentration in-
side both semi-infinite and finite systems. A third-type or flux-type
inlet boundary condition preserves mass in semi-infinite systems,
but underpredicts effluent concentrations from finite columns unless
a local transformation is used to convert volume-averaged concen-
trations into flux-averaged concentrations. This transformation leads
to an expression for the effluent concentration that is identical to
the solution for the semi-infinite system using a concentration-type
boundary condition. For column Peclet numbers greater than about
five, the resulting analytical expression for the effluent curve is shown
to be nearly identical to the analytical solution for a finite system
based on a flux-type inlet boundary condition and a zero-concentra-
tion gradient at the exit boundary. Both solutions correctly preserve
mass in the system; other solutions of the convective-dispersive
transport equation are shown to be inappropriate for analyzing col-
umn effluent data.
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PROPER formulation of boundary conditions for the
analysis of column displacement experiments in

the laboratory is critically important to the interpret-
ation of observed data, as well as for subsequent ex-
trapolation of the experimental results to transport
problems in the field. Unfortunately, the most appro-
priate boundary conditions for a given displacement
experiment are not always intuitively apparent and in
many instances vastly different solutions have been
applied to purportedly identical physical problems. In
reducing the physical complexity of flow and transport
near or across a given boundary, certain simplifying
assumptions are necessary. The exact nature of these
assumptions is often not immediately apparent or ap-
preciated. As pointed out by Bear (1979), intuitively
reasonable boundary conditions may lead to incon-
gruent results, especially for relatively short soil col-
umns. Although a few papers in the soil science lit-
erature have dealt with the effects of various boundary
conditions on solute transport (e.g., van Genuchten
and Wierenga, 1974; Parlange and Starr, 1975, 1978),
a systematic analysis of the formulation and physical
interpretation of assumed boundary conditions in re-
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lation to column displacement experiments is still
lacking. In this paper we will present a detailed anal-
ysis of several analytical solutions that previously have
been applied to column tracer studies. Using basic
principles of mass conservation, we will show that at
least two of these solutions are inappropriate for ana-
lyzing column effluent data.

Recently, a number of papers in both the petroleum
and chemical engineering literature have discussed in
very specific terms the physical and mathematical sig-
nificance of various boundary conditions (Brigham,
1974; Baker, 1977;KreftandZuber, 1978, 1979;Kreft,
1981; Nauman, 1981a,b; among others). In particular,
these papers have pointed out the need to distinguish
between volume-averaged or resident concentrations
and flux-averaged or flowing concentrations. As will
be discussed further in this paper, an understanding
of the fundamental difference between these two con-
centration modes is pertinent to the selection of proper
boundary conditions and associated analytical solu-
tions. Recommendations will be given as to which set
of boundary conditions are most appropriate for ana-
lyzing column effluent data.

THEORETICAL
The following partial differential equation is generally used

to describe one-dimensional solute transport through a ho-
mogeneous medium during steady-state flow

R(dCr/dt) = D(d2Cr/dx2) - v(dCr/dx) [1]
where Cr is the volume-averaged (resident) solution concen-
tration, D is the dispersion coefficient, y is the average pore-
water velocity, x is distance, and t is time. The retardation
factor R is included to account for linear and reversible equi-
librium adsorption. Equation [1] will be applied to finite and
semi-infinite systems that are initially free of any solute:

CfoO) = 0. [2]
Analytical solution of Eq. [1] and [2] for various boundary
conditions will be discussed now.

Semi-Infinite Systems
Suppose we add water from an entrance reservoir having

concentration C0 to a semi-infinite profile (0 < x < oo) at
a rate equal to the volumetric flux q = 6v, where 6 is the
volumetric water content of the profile. Mass conservation
across the inlet boundary requires

[- D(dCr/dx) = vC0 [31
where x = 0+ indicates evaluation at the inlet boundary just
inside the profile. Equation [3] is correct for a system in
which the entrance reservoir physically is not connected to
the column, for example, when the applied solution is slowly
trickled onto the surface of the column (compare with con-
stant rainfall). The equation is also valid for systems where
the column is connected directly to the entrance reservoir,
provided the assumption is made that molecular diffusion
and possibly some dispersion in the fore section (x < 0) can
be ignored. This means that the fore section is a perfectly
mixed reservoir. In that case, concentrations across the inlet
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boundary are macroscopically discontinuous (Danckwerts,
1953; Wehner and Wilhelm, 1956). Equation [3] specifies a
Robin, third-type, or flux-type boundary condition.

For semi-infinite systems, we need an additional bound-
ary condition specifying the behavior of Cj(x,t) when x —>
oo. For our discussion it is sufficient to require that

(dCJdx) (oo,0 = 0 . [4]
The analytical solution of Eq. [1] through [4] is (e.g., see

Lindstrom et al, 1967)

Rx-vt
Co 2 [2(DRty/2\ \vDR

X exp -
[~ 4DRt J ~ 2 I1 + ~D + ~DR }

Xexp erfc
2(DRt) l/2

[5]

Equation [5] correctly evaluates volume-averaged or resi-
dent concentrations in semi-infinite field profiles. One may
verify that [5] satisfies the mass balance requirement

[6]
Too

\CjL = R I C£x,t) dx.*/o
In other words, whatever is added at the surface (term on
the left) must be found inside the profile (term on the right).

Instead of Eq. [3], a first-type or concentration-type input
boundary condition has also been used frequently:

Q0,r) = C0 . [7]
This equation assumes that the concentration itself can be
specified at the soil surface, a situation that usually is not
possible in practice. In essence, Eq. [7] indicates that the
concentration is continuous across the inlet boundary. While
the stipulation of such, a concentration continuity at x = 0
may have an intuitive appeal, it is obtained at the cost of
maintaining a solute flux continuity across the inlet position.
Consequently, Eq. [7] is incorrect for displacement experi-
ments where the tracer solution is added at a specified rate.
This becomes evident when considering the analytical so-
lution of Eq. [1], [2], [4] and [7] (Lapidus and Amundson,
1952):

Rx - vt

vt
l/2 [8]

Substitution of this equation into Eq. [6] shows that the
mass balance identity is not satisfied. If we define a relative
error E as (see also Eq. [6])

E = (1/vCO CX*,0 dx - vC0t] [9]

then, upon integration, it is easily shown that for Eq. [8]
1

where
f = v2t/DR.

[10]

[11]

Equation [10] can be derived also by considering the actual
solute flux density Js into the column at x = 0:

Js(0,t) = [qC0-9D(dCr/dx)]\x=0. . [12]
This equation indicates that in addition to the convective
mass flux qCm a dispersive component is operative at the
boundary. This dispersion term is responsible for the ob-
served mass balance deviations, as can be shown by defining
the relative error E in terms of J~

£ =

[13]
x = 0

Substituting Eq. [8] into Eq. [13] also leads to Eq. [10]. Fig-
ure 1 shows that the relative error in the mass balance can
be extremely large for small values of the dimensionless pa-
rameter f, i.e., at early times, for systems where dispersive
transport is large compared to convective transport, and for
systems where the solute is strongly adsorbed by the solid
phase (large R). Hence, concentration-type boundary con-
dition Eq. [2] fails to satisfy conservation of mass and the
discrepancy is not always negligible.

Finite Systems
The challenge here is to define a boundary condition that

describes as realistically as possible the physical process of
flow and transport across the exit boundary of a finite sys-
tem. One requirement that always must be satisfied is con-
tinuity of the solute velocity across the lower boundary:

where L~ indicates evaluation just inside the column, and
where C, = Cj(t) is the exit concentration. As with Eq. [3]
for the inlet boundary, Eq. [14] assumes that diffusion-
dispersion phenomena in the exit reservoir are negligible, or
that the exit reservoir is not in direct physical contact with
the liquid phase inside the column. This last situation may
occur when the effluent solution drips freely from the exit
boundary (e.g., see the fraction collector system described
by Wierenga et al., 1975).

Because of the addition of an extra unknown (Ce), Eq.
[14] leads to an indeterminate system of equations. Hence,
an additional equation is needed to fully describe the sys-
tem. One such equation is based on the intuitive assumption
that the solute concentration should be continuous across
the lower boundary:

) = ex/). [15]
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Fig. 1—Plot of the relative mass balance error, E, vs. dimensionless

time f for analytical solution [8].
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Substitution of this equation into [14] leads to the frequently
used boundary condition

(dCJdx) (L,f) = 0 . [16]
It is important to realize that Eq. [16] is based on an as-
sumption, namely that the concentration macroscopically
should be continuous at x = L (Danckwerts, 1953; Wehner
and Wilhelm, 1956, Pearson, 1959). It is difficult to reason
a priori whether this assumption is reasonable in view of
the uncertainty of the exact physical processes at or near the
lower boundary. However, the requirement of a continuous
distribution at x = L seems inconsistent with Eq. [3] for
the inlet boundary which not only results in a discontinuous
distribution at x = 0, but also in a nonzero concentration
gradient at the column entrance.

Nevertheless, if we accept Eq. [16] as an appropriate
boundary condition for finite columns, then the physical sys-
tem is completely defined and can be solved. The analytical
solution of Eq. [1], [2], [3] and [16] is (Brenner, 1962)
C,(x,t)

Cn

2
m=\

2vL
D

«2
Pm 2D

vx

D 2D

where the eigenvalues ftm are the positive roots of
0m cotCS J - G&ZVvZ.) + (vL/4D) = 0. [18]

If applied to effluent curves (x = L) and using dimensionless
variables, the solution simplifies to f l 2 '

> PT" Pm

Ce(T)
= 1- 2

m=\

T = vt/L P = vL/D

[19]

[20]

[21]
where T is the number of pore volumes leached through the
column, and P is the column Peclet number. Computational
programs for evaluating Brenner's series solution are readily
available (van Genuchten and Alves, 1982). The series so-
lution converges only for relatively small values of P. For
large P-values, computationally efficient and very accurate
approximate solutions have also been obtained.

Analogous to Eq. [6] for semi-infinite systems, the mass
balance requirement for finite columns is

v('[C0-Ce(T)]dT=R(LCr(x,t)dx. [22]
JQ JQ

This equation states that whatever is added to the column
minus what is leaving the column (left side) must be stored
in that column (right side). Upon substitution, it is readily
shown that Brenner's solution satisfies [22].

We have emphasized that Brenner's solution for Ce sat-
isfies Eq. [3] for the inlet boundary, Eq. [14] for the outlet
boundary, and that the requisite system of equations is com-
pleted by assuming that Q(0 = Cj(L,i). An alternative way
of completing the system of equations is to assume that sol-
ute distributions inside the finite column are unaffected by

the presence of an outflow boundary or effluent collection
system, thus considering the column to be part of an effec-
tively semi-infinite system. The requisite additional stipu-
lation that dC£<x>,t)/dx = 0 may then be invoked, which in
turn suggests that Eq. [5] adequately describes the concen-
tration distribution within the column. However, solution
[5] does not immediately predict the effluent concentration
since we have no longer imposed Brenner's assumption that
C/0 = C£L,t). An expression for the effluent concentration
can nevertheless be obtained by substitution of Eq. [5] di-
rectly into Eq. [14] which yields

RL- vt
2(DRt)l/2C.

or in dimensionless form
Ce(T)/C0= l

[23,

- T)]

[24]

Note that Eq. [23] is exactly the same as Eq. [8] when eval-
uated at x = L. Equation [23] can be derived also by con-
sidering Ce to be the unknown closing term of mass balance
Eq. [22]. Differentiating that equation with respect to time
and solving for the effluent concentration gives

[25]

In other words, the effluent concentration equals the input
concentration minus the change in the amount of solute
stored in the column. Substituting Eq. [5] into Eq. [25] and
carrying out the indicated integration leads directly to Eq.
[23]. A third equivalent expression for Cj(t) is given by

CJt) = — dx [26]

which states that the effluent concentration equals the time
derivative of the amount of solute that would be stored in
the region L < x < oo if the column were to be part of a
semi-infinite system. Equation [26] can be obtained by tak-
ing the time derivative of Eq. [6] and using the resulting
expression to eliminate C0 from Eq. [25].

The analysis above indicates that the flux-type inlet
boundary condition in Eq. [3] properly conserves mass when
used to calculate volume-averaged or resident concentration
distributions in semi-infinite systems. The analytical solu-
tion for this problem (Eq. 5) can be used also to derive an
expression for the breakthrough curve, Cj(t), from a finite
column; the expression turns out to be identical to the an-
alytical solution for a first-type input boundary condition
and a semi-infinite system (Eq. 23). This relationship be-
tween the two semi-infinite solutions has been described pre-
viously (Brigham, 1974; Kreft and Zuber, 1978; Parker and
van Genuchten, 1984; among others). It is a direct conse-
quence of a transformation similar to [14] but applicable at
any given distance, x. This transformation will be discussed
next.

Flux-Averaged vs. Volume-Averaged Concentrations
Equation [1] is written in terms of the in-situ, volume-

averaged, or resident concentration, Cn which is the mass
of solute per unit volume of fluid contained in an elementary
volume of the system at a given instance. One can also de-
fine a flux-averaged or flowing concentration, Cfi which is
the mass of solute per unit volume of fluid passing through
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a given cross-section during an elementary time interval
(Kreft and Zuber, 1978):

Cf=Cr- (D/v) (dCr/dx) [27]
Substitution of Eq. [27] into Eq. [1] leads to exactly the same
transport equation, except that the resident concentration C,
is replaced by the flux concentration, C/.

R (dCJdt) = D (d2Cj/dx2) - v (dCjdx). [28]
Hence, spatial and temporal distributions of Cr and C}are
described by the same governing equation. Boundary con-
dition [4] also holds for both C, and C/, this follows im-
mediately by noting that the second spatial derivative of [5]
vanishes when x —» oo. Finally, application of Eq. [27] to
boundary condition [3] leads to

Cj(0,t) = C0. [29]
Hence, transport equations that describe resident concen-
trations in semi-infinite systems subject to first-type inlet
boundary conditions are mathematically identical to trans-
port equations that describe flux concentrations in semi-
infinite systems subject to first-type inlet boundary condi-
tions. This observation shows that the solution of Lapidus
and Amundson, given by Eq. [8], predicts flux concentra-
tions in a semi-infinite system, and if extended to a finite
column, properly describes the effluent concentration.

Equation [27] can be applied also to Brenner's solution
for a finite system. Substituting Eq. [17] into Eq. [27] yields
the following expression for the flux concentration Cf

C

s
m = l

VX
2D

V2t
4DR L2R

2D D

[30]
where the eigenvalues f)m are the same as before (Eq. 18).
Note that Eq. [30] at the exit boundary x = L is the same
as Eq. [19]. This follows also immediately from Eq. [27] and
boundary condition [16]. Hence, flux and resident concen-
trations as calculated with Brenner's solution are identical
at the exit boundary. However, they can be quite different
inside the column. This is shown in Fig. 2 where the two
concentration modes are plotted versus reduced distance
(x/L) using a value of 5 for P. Figure 2 also shows the so-
lution of Cleary and Adrian (1973) for boundary conditions
[7] and [16], i.e. (see also van Genuchten and Alves, 1982),

0° 1.0
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0.4
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0.2
C r- BRENNER s-..
C, - BRENNER
C, - CLEARY AND ADRIAN

0.8 0.4 0.6 0.8
REDUCED DISTANCE, x/L

1.0

Fig. 2—Distributions vs. reduced distance of relative volume-aver-
aged and flux-averaged concentrations predicted with Brenner's
solution, and relative flux-averaged concentrations predicted with
the solution of Cleary and Adrian.

vx

4DR L2R

m=\
ID

where the am are the positive roots of
affl cot(am) + (vL/2D) = 0 . [32]

Note that we ostensibly assumed that Cleary and Adrian's
solution represents flux concentrations rather than resident
concentrations. Because of boundary condition [16], C^L,t)
= Cj(L,t) = Cj(t) for Cleary and Adrian's solution, as was
the case for Brenner's solution.

Figure 2 shows that the solution of Cleary and Adrian
(1973) deviates substantially from the flux concentration (Eq.
[30]) as derived from the solution of Brenner (1962). This
deviation is caused by the fact that boundary condition [16]
is not invariant by the transformation from C, to C/ (the
second spatial derivative at x = L is not zero). Thus, if
Brenner's solution is taken as the correct expression for the
resident concentration, then Cleary and Adrian's solution
leads to an incorrect description of the flux concentration.
Alternatively, one may also argue that if Cleary and Adrian's
solution were to represent flux concentrations, then Bren-
ner's solution cannot represent resident concentrations. This
inconsistency gives additional support to our contention that
Eq. [16] is based on a convenient but purely intuitive as-
sumption.

DISCUSSION
To appreciate the differences between various ana-

lytical solutions that are potentially applicable to col-
umn displacement experiments, Fig. 3 shows calcu-
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PORE VOLUMES, T
Fig. 3—Relative effluent concentration profiles for analytical solu-

tions CA (Cleary and Adrian, 1973), LA (Lapidus and Amundson,
1952), LB (Lindstrom et al., 1967) and BR (Brenner, 1962). The
effluent curves are plotted for three values of the column Peclet
number, P.
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lated effluent curves for three values of the column
Peclet number, P. Plotted are the solutions of Cleary
and Adrian (1972), Lapidus and Amundson (1952),
Lindstrom et al. (1967), and Brenner (1962), referred
to respectively by CA, LA, LB, and BR and given in
this same order by Eq. [31], [8], [5], and [17]. Note
that the four solutions deviate drastically when P =
1, but slowly converge to each other as P increases.
Analytical solutions LA and BR are very similar when
P = 5, while essentially no differences between these
two solutions are present when P reaches a value of
20.

An important attribute of a breakthrough curve from
a finite column is the area above each curve. This area,
sometimes referred to as the holdup (H), should rep-
resent the amount of solute that can be stored in the
column. Mathematically, H is given by

[1 - CJ,T)/C0] dT. [33]

One may verify that H = R for the two curves des-
ignated LA and BR in Fig. 3. For the curve CA (Eq.
[31]), His given by

H = R[l - (l/P) - (e~p/P)]
while for curve LB (Eq. [5])

[34]

H = R[l + (l/P)]. [35]
Figure 4 gives a plot of the relative holdup (H/R)

vs. P for the four analytical solutions for CJ(T). Note
that H/R deviates substantially from 1.0 for the so-
lutions of Cleary and Adrian (1972) and Lindstrom et
al. (1967). These deviations illustrate that highly in-
accurate estimates for R can be obtained when the
solutions CA or LB are fitted to observed effluent data,
especially when P is small. For example, analytical
solution LB overestimates R by no less than 50% when
P = 2.

The solutions LA and BR always lead to correct
estimates for R, independently of the value of the Pe-
clet number. However, the two solutions may yield
somewhat different estimates of P, especially when P
becomes less than about 5 (Fig. 3). As discussed ear-
lier, LA and BR each are based on different assump-
tions regarding the physics of flow and transport at or
near the lower boundary. Because of the apparent in-
consistency in the stipulation of finite and zero con-
centration gradients at the inlet and outlet boundaries
for Brenner's solution, and because of its numerically
more tedious form compared to Eq. [8], we recom-
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Fig. 4—Relative holdup (H/R) vs. column Peclet number, P, for an-
alytical solutions CA, LA, LB and BR.

mend that only the solution of Lapidus and Amund-
son (1952) be used to calculate effluent curves from
finite columns. Of course, this same solution (Eq. [8])
should also be used to calculate solute fluxes in the
field. Similarly, we recommend that only the solution
of Lindstrom et al. (1967) be used to evaluate in situ,
volume-averaged concentrations.

In some cases, breakthrough curves are obtained
within laboratory columns by means of suction cups
or other extraction devices. In that case, it is difficult
to reason which concentration mode will be observed.
Because the extracted soil solution is obtained at a
fixed location in the soil, it is unlikely that the ob-
served data are flux concentrations. However, because
of the transient behavior of displacement experiments
and the uncertainty of how exactly flow lines are dis-
rupted by the installation and performance of suction
cups, the observed concentration mode is probably
not exactly that of a resident concentration either. This
problem is pertinent for both laboratory and in situ
field measurements.

It should be noted that transformation [27] from
resident to flux concentrations has been shown to hold
only for Eq. [1] and its analytical solutions for a semi-
infinite system (LB and LA). The transformation may
not necessarily hold for more complicated transport
models (e.g., for certain kinetic adsorption models).
In that case, flux concentrations—and hence break-
through curves—are best calculated by first deriving
the analytical solution for the resident concentration
and subsequently applying Eq. [14] to obtain an
expression for the effluent curve.

SUMMARY AND CONCLUSIONS
This study shows that solute transport in a semi-

infinite field profile is described properly with analyt-
ical solution [5] for a flux-type soil surface input
boundary condition. The analytical solution for this
problem can be used also to describe resident (vol-
ume-averaged) solute distributions inside finite soil
columns. However, the solution needs to be modified
if applied to effluent curves from finite columns. Based
on mass balance calculations, and assuming that the
column exit boundary does not alter flow lines up-
stream of the boundary, an equation for the break-
through curve (Eq. [23]) can be derived that is math-
ematically similar to the solution for a concentration-
type soil surface inlet boundary condition. This sim-
ilarity is not accidential but results from a transfor-
mation from volume-averaged (Cr) to flux-averaged
(C/) concentrations. A similar transformation fails for
two available solutions applicable to finite systems.

Of the two solutions for a finite system, only the
solution of Brenner (1962) for the flux-type inlet
boundary condition conserves mass in the system. This
solution leads to an expression for the effluent curve
that is nearly identical to the derived expression [23]
for the breakthrough curve from a finite profile, pro-
vided the column Peclet number is not much less than
about 5.

Because of some inconsistencies in the stipulation
of concentration continuities at the inlet and outlet
boundaries for Brenner's solution and because of its
numerically more tedious form compared to the so-
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lution of Lapidus and Amundson (1952), we recom-
mend that the latter solution always be used to eval-
uate flux-averaged concentrations, whether they
pertain to finite systems (effluent curves) or semi-
infinite field profiles. We similarly recommend that
only the solution of Lindstrom et al. (1967) be used
for volume-averaged concentrations.
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